为了控制核燃料的环境危害,必须对其进行回收管理和后处理. PUREX是一种高效的核燃料后处理方法,具有效率高、可扩展性强及适用性广等优点,目前已经得到了广泛应用. PUREX工艺很复杂,操作时必须对萃取剂及溶液的性质进行准确全面的测量和分析,并对处理流程进行严格保障.为了获取相关数据,已有研究大多依赖传统的批量实验测试法.这种方法需要多次实验迭代和人工操作,研究周期长、资源消耗大,且萃取效率低.机器学习主要通过学习和分析海量数据来实现模型预测,有望避免批量实验测试法中出现的问题,提高萃取效率.近年来,各种机器学习方法在PUREX中的应用逐渐增多.本文旨在对机器学习方法在PUREX流程的内部反应和后处理保障等方面的应用进行综述,促进和推动机器学习方法在PUREX中的进一步应用,提高萃取效率.在内部反应方面,本文概述了一些机器学习算法在萃取剂选择、萃取剂性质预测及溶液选择等方面的应用.在后处理保障方面,本文概述了一些机器学习算法在保障后处理流程顺利进行等方面的应用.综合看,将机器学习方法应用于PUREX流程确实能提供更精准的预测结果、提高萃取效率.此外,本文还对机器学习方法在PUREX相关领域的应用进展进行了概述,重点介绍了分子动力学与机器学习方法的集成方法及其应用,以便启发PUREX与机器学习模型相结合的方法的研究.最后,本文还介绍了一些利用机器学习方法扩展和增强数据集、克服数学模型建模时可用数据集过小问题的具体应用.