基于DR-DT的视觉SLAM参数自适应调整
针对传统视觉SLAM系统依赖固定参数且需手动调整的问题,提出了一种基于离散化奖励Decision Transformer的自适应参数调整方法——DR-DT。该方法将参数自适应过程转化为序列建模任务,通过选择SLAM关键参数定义连续动作空间,基于位姿不确定性构建奖励函数,结合离散化奖励机制提升学习稳定性。以ORB_SLAM3为测试系统,在EuRoC MAV和TUM-VI数据集上的实验结果表明,所提方法能有效提升视觉SLAM系统在复杂场景中的位姿估计精度,同时简化了参数调整过程。该方法为视觉SLAM系统的参数自适应优化提供了新思路。
计算机应用研究
网络首发
立即查看 >
图书推荐
相关工具书