融合Wi-Fi与激光的机器人室内大型环境SLAM
同步定位与地图构建(SLAM)是实现移动机器人自主导航定位的关键。针对室内大型环境下激光SLAM闭环检测容易产生错误闭环,导致机器人位姿估计误差较大的问题,提出了一种融合Wi-Fi与激光信息的图优化SLAM算法。首先,构建Wi-Fi指纹序列与激光子地图;然后,根据每对指纹序列的相似度均值和标准差筛选用于闭环检测的激光子地图。在此基础上,提取所筛选子地图的特征点并匹配,以确定激光闭环;最后,通过图优化方法融合里程计与激光闭环,优化机器人的轨迹并构建全局地图。在170 m×30 m和180 m×80 m的室内环境中采集了三组数据,对所提算法性能进行验证。实验结果显示,所提算法的定位精度在三组数据上分别达到0.78 m、0.67 m和0.89 m,与激光SLAM算法相比分别提升了48.6%、53.1%和68.7%,证明所提算法有效提高了室内大型环境下激光SLAM的位姿估计精度。
计算机应用研究
2025年03期
立即查看 >
图书推荐
相关工具书